

ecology and environment, inc.

International Specialists in the Environment

US EPA RECORDS CENTER REGION 5

111 West Jackson Boulevard Chicago, Illinois 60604 Tel. (312) 663-9415, Fax (312) 663-0791

MEMORANDUM

DATE:

April 11, 1995

TO:

Dave Hendren, TAT Project Manager, E & E, Chicago, IL

FROM:

Yvette Anderson, TAT Chemist, E & E, Chicago, IL

THROUGH:

David Hendren, TAT Analytical Services Manager,

E & E, Chicago, IL

Mary Jane Ripp, TAT QA Reports Manager, E & E,

Chicago, IL

SUBJECT:

Toxicity Characteristic Leachate Procedure

(TCLP) Metals,

General Iron, Chicago, Cook County, IL

REFERENCE:

Project TDD T05-9501-009 Analytical TDD T05-9510-809

Project PAN EIL0857SAA Analytical PAN EIL0857AAA

The data quality assurance (QA) review of six soil samples collected from the General Iron site is complete. The samples were collected on February 22, 1995, by the Technical Assistance Team (TAT) contractor, Ecology & Environment, Inc. (E & E). The samples were submitted to IEA of Schaumburg, Illinois, for analysis. The laboratory analyses were performed according to United States Environmental Protection Agency Solid Waste 846 Methods 1311, 6010, and 7470.

Sample Identification

E & E	Laboratory				
Identification No.	<u> Identification No</u>				
K5-01	950406001				
K5-02	950406002				
K5-03	950406003				
K6-04	950406004				
K5-05	950406005				
K5-06	950406006				

General Iron

Project TDD: T05-9501-009 Analytical TDD: T05-9501-809

Page 2

Data Qualifications

I. <u>Sample Holding Time: Acceptable</u>

The samples were collected on February 22, 1995, digested on March 7, 1995, and analyzed on March 7, 1995. This is within the 6-month holding time for metals and the 28-day holding time for mercury.

II. <u>Calibrations: Acceptable</u>

o Initial Calibration:

Calibration results were within the established quality control limits of 90% to 110% of the true value for metals and 80% to 120% for mercury.

o Continuing Calibration:

Calibration results showed the control criteria of 90% to 110% for metals and 80% to 120% for mercury were met.

III. Blanks: Acceptable

A method blank was analyzed with the samples. No target compounds or contaminants were detected in the method blank.

IV. Interference Check Sample: Acceptable

All parameters were within the Interference Check Sample (ICS) control limits of 80% to 120% of the true values. ICS samples were run at the beginning and end of sample analysis.

V. Overall Assessment of Data for Use: Acceptable

The overall usefulness of the data is based on criteria for QA Level II outlined in the Office of Solid Waste and Emergency Response (OSWER) Directive 9360.4-01 (April 1990), Data Validation Procedures, Section 3.0, Metallic Inorganic Parameters. Based upon the information provided, the data are acceptable for use.

Client: Ecology & Environment IEA Job#: CH950406

Project #: T05-9510-809

TOTAL RCRA METALS mg/L

Matrix: Leachate

							
	Client ID	K5-01	K5-02	K5-03	K5-04	K5-05	PQL
		950406	950406	950406	950406	950406	
Analyte – Method	Lab ID	001	002	003	004	005	
Arsenic – 6010		<0.1	<0.1	<0.1	<0.1	<0.1	0.1
Barium – 6010		1	0.86	0.25	0.82	1.2	0.05
Cadmium - 6010		0.4	0.29	0.32	0.4	0.2	0.005
Chromium - 6010		0.021	<0.01	0.015	0.012	0.014	0.01
Lead - 6010		0.051	<0.05	<0.05	0.1	0.13	0.05
Mercury – 7470		<0.0002	<0.0002	<0.0002	0.00023	<0.0002	0.0002
Selenium - 6010		<0.1	<0.1	<0.1	<0.1	<0.01	0.1
Silver - 6010		<0.01	<0.01	<0.01	0.016	0.01	0.01
_							

PQL = Practical Quanitation Limit

To obtain sample-specific quantitation limit, multiply PQL by the Dilution Factor.

Client: Ecology & Environment

IEA Job#: CH950406 Project #: T05-9510-809

TOTAL RCRA METALS mg/L

Matrix: Leachate

	Client ID	K5-06		_		PQL
	Ollotte 15	950406	Ext.			. 42
Analyte – Method	Lab ID	006	Blank			
						
Arsenic – 6010		<0.1	<0.1		·	 0.1
Barium – 6010		1.9	1.0		1-2-1	0.05
Cadmium - 6010		0.23	<0.005			 0.005
Chromium - 6010		0.014	<0.01			0.01
Lead - 6010		0.13	<0.05			0.05
Mercury – 7470		<0.0002	<0.0002			 0.0002
Selenium - 6010		<0.1	<0.1			 0.1
Silver - 6010		<0.01	<0.01			0.01

PQL = Practical Quanitation Limit

To obtain sample-specific quantitation limit, multiply PQL by the Dilution Factor.